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A linear numerical method is described which generates a curvilinear mesh that is as 
nearly orthogonal as possible, in a least-squares sense, subject to the constraint that mesh 
lines are matched to arbitrarily specified points around the perimeter of the region. An 
option permits trading off more orthogonality for improved line spacing. The use of the 
method in a practical zoner/rezoner is discussed. The method also has application for 
Eulerian hydrodynamic calculations. 

INTRODUCTION 

The difference equations of Lagrangian hydrodynamics in two space dimensions 
are conveniently referred to an orthogonal rectilinear mesh of equally spaced 
lines (e.g., Fig. l), commonly called the “logical mesh.” Let the lines be labeled 
with integer values of two variables K, L. The image in Eulerian space of a sub- 

4 

6 

FIG. 1. L-shaped portion of a logical mesh. 

* Work performed under the auspices of the U. S. Atomic Energy Commission. 
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region1 of the logical mesh is a curvilinear mesh inscribed in the corresponding 
subregion of Eulerian (R, Z) space. The “K lines” and “L lines” move with the 
fluid: No fluid crosses the mesh. 

The problem of generating a mesh is equivalent to finding a mapping of the 
subregion of the logical mesh onto the corresponding region of R-Z space. 
Characteristics of an ideal mesh can be enumerated: 

1. The K lines and/or L lines should not be too crowded or spaced too far 
apart: In the one case the time interval dt for the calculation will be unnecessarily 
restricted; in the other the spatial resolution will suffer. 

2. The K lines should not be too skew with respect to the L lines: It can be 
argued that the accuracy of finite-difference approximations to the differential 
equations deteriorates as the mesh becomes increasingly nonorthogonal. 

3. The mesh should be smooth, with first derivatives everywhere continuous. 

4. The mesh lines should be orthogonal to the boundary of the subregion, 
assuring a smooth join to lines in adjacent subregions. 

5. The mapping should enable mesh lines to be matched around the perimeter 
of the subregion to lines in adjacent subregions. (That is, it should be possible 
to match the lines to arbitrarily specified points around the perimeter.) 

6. The method should enable inscribing a mesh in subregions of arbitrary 
shapes (bounded by portions of K and L lines). 

Obviously, many calculations have been done utilizing meshes that are not 
ideal in the above sense. 

A method for inscribing an orthogonal curvilinear mesh (OCM) in an arbitrary 
subregion was described in a previous article [l]. The method has the limitation 
that mesh lines cannot be matched around the entire perimeter of a subregion. 
For example, in the L-shaped subregion of a logical mesh shown in Fig. 1, lines 
could be matched on sides 1, 2, 3, 4, but not sides 5 and 6. (The “L” could be 
subdivided into three rectangles, enabling matching along sides 5 and 6 instead 
of 1, 2, 3, 4.) 

The present article presents a method for inscribing a mesh in an arbitrary 
subregion which relaxes the requirement of strict orthogonality to permit matching 
lines to arbitrarily selected points along all sides of the subregion. The method 
to be described also permits trading off more orthogonality for improved spacing 
of lines. 

1 A single material or portion of a single material. 
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AN OPTIMAL MESH GENERATOR 

A measure of the deviation of a mesh from orthogonality is given by a positive 
integral 

Id4 = j-j K& - G12 + G + &)‘I dK dL. 

The subscripts K, L indicate partial derivatives, and the integral is over the sub- 
region of interest. In the case of a strictly orthogonal mesh the integral vanishes, 
since at each point 

(R + iZ), = -ia(R + iZ), , (1) 

i.e., the vector (R + iZ), tangent to a line L = const is perpendicular to (R + iZ), , 
tangent to K = const at the same point. The parameter 01 represents the aspect 
ratio (length/width) of the mesh quadrilaterals.2 

We wish to minimize II(~) subject to the boundary conditions, the given spacing 
of points around the perimeter. If 01 = const is assumed, the problem is linear. 
The Euler equations minimizing Z, are 

I 
Z&K -I- a2Ru = 0, 
z,, + a2z,, = 0. 

These Laplace-like equations are readily solvable by standard numerical techniques 
for elliptic equations. In this case 01 represents an average aspect ratio. 

Another positive integral, which essentially measures the deviation of the mesh 
quadrilaterals from parallelograms, has been proposed by Dr. G. Fraley: 

I2 = ss I(R + iZ),, I2 dK dL. 

Minimizing Z2 tends to make adjacent K lines or L lines “parallel,” i.e., equidistant 
along their lengths. 

The present method minimizes a weighted sum of the above integrals, 

WA4 + w2z2 . 

With constant 01 and w2 f 0 the resulting Euler equations are fourth-order, 

I 
%RKKLL + WI#KK + ~2&~) = 0, 
w2&m, + WdZKK + ~“ZL,) = 0. 

(2) 

The weights and the parameter 01 are arbitrary. The resulting meshes are optimal 
in a least-squares sense. 

e For a strictly orthogonal mesh, 2 = (RK’ + ZK’)/(RL’ + Z&. Tbe image in R-Z space 
of a mesh unit bounded by K, K + 1, L, L + 1 is imprecisely referred to as a “quadrilaterial.” 
The mesh lines in R-Z space are curves, of course. 

58~/6/3-6 
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Equations (2) are hyperbolic. The K lines and L lines are characteristic: 
Discontinuities in the derivatives at points of the boundary “propagate” along 
the corresponding K or L lines, as can be seen from the examples given below.3 

FIGURE 2 

s It was pointed out to the author by Dr. G. Pimbley that Eqs. (2) with w1 = 0 can be readily 
integrated analytically when the subregion of K-L space is a rectangle. See also Ref. [2]. The 
analytical solution was used to check the numerical solutions included in this article. 
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FIO. 2. a* w 3. 

Of course, it is not necessary to assume 01 = constant. In fact, it seems reasonable 
to suppose that it might be possible to determine an 01 field, ol(K, L), so as to make 
the orthogonality integral I1 vanish. Numerical solutions of the corresponding 
quasilinear mapping problem indicate that this is possible, at least in some cases.4 

EXAMPLES 

The Eqs. (2) were solved numerically by the method of successive over- 
relaxation. A series of runs varying the value of the S.O.R. parameter w indicated 
that the curve of number of iterations to converge vs w usually bottoms out at a 
value of w not too different from the best value for Laplace’s equation solved 
on a rectangle circumscribing the subregion of K-L space. The number of iterations 
required for convergence is not a terribly sensitive function of w. In w1 = 0 cases 
convergence is relatively slow (a few hundred iterations required for typical 
cases). 

Figures 2-85 are an assortment of examples, including some unsatisfactory 
zonings, illustrating the effects of various choices of the parameter 01 and the 
weights wl, w2 . Also shown for comparison are examples of OCM (generated 

4 If the method turns out to be generally useful, it will be the subject of a future article. 
6 The figures were produced by an automatic plotting machine which approximates the curved 

mesh lines by straight line segments. 
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FIG. 3. 01* w 1.5. For the zoning with OCM (k) the region was subdivided along A-A. 
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a=6 

(a) 

w, = I w2 = 6 
a=3 

w, = I w* =35 (d) 

a=3 

w,=o W*DI (el 
(fl 

FIG. 4. CL* m 2.5. 
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by the method of Ref. [l]) inscribed in the same subregions. The spacings of the 
mesh lines along the perimeters were regarded as given data. (In the examples 
of OCM, the line spacings were prescribed only along parts of the perimeters, 
as discussed above.) 

It is seen that a too small (large) value of CY results in a “spill over” across an 
inward-bulging portion of the boundary that is an L line (K line). For example, 
for sufficiently small 01 the L lines become straight lines connecting boundary 
points on opposite sides of the subregion; in this case, some of the L lines will 

w,=I w2=o 0 = 20 w, = I WP =o a=2 

(a) (b) 

w,=l w,=o a 2 0.7 

(cl 

FIG. 5. 

OCM 

(d) 
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probably intersect an inward-bulging portion of the boundary corresponding to 
an L line. The value designated CL* is an estimate of 

(RK2 + ZK2)l12 
(RL2 + ZL2)1J2 ’ 

the indicated averages being taken over the subregion. 

w,=l w2=0 a=l OCM 
(a) (b) 

FIG. 6. Lx* w 1. 

(a) 
FIG. 7. a* w 2. 
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A PRACTICAL ZONER/REZONER 

Since orthogonal meshes have important advantages when they can be used, 
the given region might first be zoned with an OCM. As described in Ref. [I], it 
may be necessary to subdivide the region in order to accomplish this. Portions of 
the OCM considered to have unsuitable line spacing can be rezoned by the method 
presented above. Alternatively, the entire given region can be zoned by the method 
of this article. 

FIG. 8. CX* = 1. 

The parameter 01 and the weights w1 , w2 give the method a flexibility and allow 
the user a degree of control over the average aspect ratio of the mesh cells and 
the line spacing not possible with a parameter-free zoner, such as that of Ref. [3]. 
It does not seem possible in general to determine a priori best values of the param- 
eters. For certain simple geometric figures (Fig. 9) the best value of 01 is given by 
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o(*. By consideration of an average K line and an average L line, an estimate of 
(Y* can be readily made for a given region. Optimal values of LV~ , 1~~ can be 
determined by inspection from a series of meshes such as 

(4 w,=L w2 = 0, a = CL*; 

(W wl=l, w2 = I 

4 (a* < 11, 
4((u*)2 (1 < a*); 

(c> WI = 0, w2 = 1. 

Alternatively, an automatic trial-and-error procedure can be developed to enable 
the computer to decide which values of the weights w1 , w2 to use. In case a mesh 
is generated which spills over the boundary of a subregion, at least two “bowtied” 
zones are produced (Fig. 10). The computer can be programmed to generate a 

I ! ! 
I I I I I 

(a) (b) 
FIG. 9. Examples of regions with simple shapes for which the optimal value of the parameter 

a is OL*. 

sequence of meshes (e.g., the sequence a-b-c given above), testing each mesh 
for bowties along the perimeter and any other criteria (line spacing, skewness, 
smoothness) deemed important. (For example, the value of the integral Z1 , normal- 
ized by 2a: x area of subregion in R-Z space, could be computed as a measure of 
skewness. For a nearly orthogonal mesh, Zr < 2~~4.) 

FIG. 10. “Bowtied” zone. 

The present method also has application for rezoning subregions where the 
mesh has become too distorted as a result of the development of the flow. In 
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such an application an estimate of a* can be determined numerically making use 
of the old mesh values. OCM should be well-suited for rezoning calculations in 
which dip is allowed along material interfaces, since there would be no requirement 
to match lines along such interfaces. 

The meshes generated by the present method also have application for Eulerian 
hydrodynamic calculations in which it is necessary to prescribe boundary condi- 
tions along the sides of regions with nonsimple shapes, for example, channels or 
rigid obstacles. 
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